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Abstract. We describe the influence of electromagnetism on the phenomenology of K → ππ decays. This is
required because the present data were analyzed without inclusion of electromagnetic radiative corrections,
and hence contain several ambiguities and uncertainties which we describe in detail. Our presentation
includes a full description of the infrared effects needed for a new experimental analysis. It also describes
the general treatment of final state interaction phases, needed because Watson’s theorem is no longer
valid in the presence of electromagnetism. The phase of the isospin-two amplitude A2 may be modified
by 50 → 100%. We provide a tentative analysis using present data in order to illustrate the sensitivity to
electromagnetic effects, and also discuss how the standard treatment of ε′/ε is modified.

1 Introduction

In this paper we address the effect of electromagnetism
on the phenomenology of K → ππ decays. Our previ-
ous work of [1–3] has dealt mainly with the determination
of structure dependent EM effects on the K → ππ am-
plitudes. It is the aim of the present work to attempt a
complete phenomenological analysis. We start by briefly
reviewing the standard treatment of K → ππ decay am-
plitudes, pointing out that there is room for potentially
important isospin breaking effects. We then focus on the
effect of electromagnetic interactions (EM); we enumer-
ate the main new features due to EM and describe their
impact on the parameterization of the K → ππ decay am-
plitudes. Our quantitative analysis begins in Sect. 2 where
we take up the problem of the infrared divergences which
are induced by electromagnetism. We provide a complete
description suitable for use in an experimental analysis in
Sect. 3. We also point out that the data on K → ππ do
not lead to a direct extraction of the strong phase shift
difference δ0 − δ2, because electromagnetism changes the
rescattering phases of the amplitudes. Already a pertur-
bative calculation has provided clues for the presence of
sizeable effects [2]. To account for this effect more gener-
ally, we provide in Sect. 4 a suitable extension of Watson’s
theorem, obtained after writing and solving the unitar-
ity constraints in presence of isospin-breaking interactions.
Our goal throughout the paper is to relate the theoretical
and experimental issues of these decays, in the hope that a
future experimental analysis will be undertaken to resolve
the substantial experimental uncertainties.
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The reason why present experimental information is
not adequate is that most of the data was analyzed with-
out the inclusion of electromagnetic radiative corrections.
This means that the data in the Particle Data Tables is
not fully reliable. Moreover, for certain quantities (namely
δ0 − δ2 and the I = 2 amplitude A2) this uncertainty is
enhanced by a ∆I = 1/2 enhancement factor of 22. In
Sect. 5 we demonstrate these effects by giving an illustra-
tive data analysis, trying our best to interpret the present
data. This step is necessarily tentative and likely partially
incorrect, as it requires knowledge of the experimental pro-
cedure used to deal with soft photons when measuring the
branching ratios. In the absence of detailed information
from the Particle Data Group (PDG), we adopt the sim-
plest theoretical framework, not necessarily corresponding
to the real experimental setup. Within this simple frame-
work we are able to show that the extraction of EM free
quantities is quite sensitive to the treatment of infrared
photons.

The other interesting phenomenological issue concerns
the effect of electromagnetism on CP-violating observ-
ables. In Sect. 6 we discuss the impact of our findings on
theoretical predictions for ε′/ε. In particular, we provide a
quantitative estimate for the parameter ΩEM, the effect of
a ∆I = 5/2 interaction, and the impact of the new rescat-
tering effects on the phase of ε′. We conclude the paper
with a summary of our findings in Sect. 7.

1.1 Standard phenomenology for K → ππ decays

Let us start from the conventional phenomenological anal-
ysis of the decay amplitudes. There are three physical
K → ππ decay amplitudes1,

1 The invariant amplitude A is defined via out〈ππ|K〉in =
i(2π)4δ(4)(pout − pin) (iA)
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AK0→π+π− ≡ A+− ,

AK0→π0π0 ≡ A00 , AK+→π+π0 ≡ A+0 . (1)

We consider first these amplitudes in the limit of exact
isospin symmetry and then identify which modifications
must occur in the presence of electromagnetism. In the
I = 0, 2 two-pion isospin basis, the physical amplitudes
are parameterized as:

A+− = A0 e
iδ0 +

√
1
2
A2 e

iδ2 ,

A00 = A0 e
iδ0 −

√
2A2 eiδ2 , (2)

A+0 =
3
2
A2 e

iδ2 .

In the above, A0,2 are the ∆I = 1/2, 3/2 transition am-
plitudes corresponding to the ππ final states with isospin
equal to 0, 2 respectively. They are real in the limit of CP
conservation. The δI are the I = 0, 2 ππ scattering S-wave
phase shifts at center of mass energy equal to the kaon
mass. They enter the parameterization as prescribed by
unitarity (the Fermi-Watson theorem). Knowledge of the
experimental branching ratios [4] allows one to use (2) to
extract the isospin amplitudes. Neglecting the small CP -
violation effect, we find2

A0 = (5.458 ± 0.012) × 10−7MK0 ,

A2 = (0.2454 ± 0.0010) × 10−7MK0 , (3)
δ0 − δ2 = (56.7 ± 3.8)o .

Throughout we express the K → ππ amplitudes in units
of 10−7MK0 , with MK0 = 0.497672 GeV.

A careful inspection of these phenomenological results
reveals some inconsistencies with other existing pieces of
phenomenology and theoretical analysis. These clues seem
to suggest that isospin breaking effects (like EM) can play
an important role in the phenomenology of K → ππ de-
cays. The considerations we present below apply to all
isospin breaking interactions. In this category one includes
both EM and strong isospin breaking, produced by the dif-
ference in the up and down quark masses. In this work we
are concerned exclusively with EM effects (also analyzed
in [5–7]). For treatments of strong isospin breaking effects
see [8,9].

Isospin breaking interactions will in general mix the
amplitudes A0 and A2, thus generating potentially big cor-
rections to A2, proportional to A0 · α/π. A related issue
concerns the presence of a ∆I = 5/2 component in the
interaction. This problem has recently received attention
in [10]. A ∆I = 5/2 component will distinguish between
the amplitudes A2 entering in theK0 andK+ decays. The
expression of A0, A2, A+2 in terms of A∆I is given by:

A0 = A1/2 ,

A2 = A3/2 +A5/2 , (4)

A+2 = A3/2 − 2/3 A5/2 .

2 Knowledge of the phase difference δ0 − δ2 from other de-
terminations poses the constraint cos(δ0 − δ2) > 0, implying
that A0A2 > 0. In this paper, we take A0 and A2 as positive
numbers

We expect the dominant ∆I = 5/2 effect to arise by com-
bining the large ∆I = 1/2 weak interaction with the
∆I = 2 component of the electromagnetic interaction.
A combination of the ∆I = 3/2 hamiltonian with the
∆I = 1 interaction proportional to mu − md is also ex-
pected to contribute. However, its effect is expected to be
doubly suppressed (by the ∆I = 1/2 rule and the small-
ness of mu − md).

A further problem with the isospin analysis is revealed
by looking at the extracted phase shifts. The value δ0 −
δ2 = (56.7 ± 3.8)o obtained from kaon decay data has to
be compared with information coming from other sectors
of low energy phenomenology. In particular, the value ex-
tracted from a dispersive treatment of ππ scattering data
is δ0 − δ2 = (45.2 ± 1.3+4.5−1.6)

o [11], and the prediction of
ChPT [12] is δ0−δ2 = (45±6)o. These two determinations
are mutually compatible. However, there is a sizeable dis-
crepancy with the result obtained in the fit to K → ππ.
This can be ascribed to isospin breaking and to a non-
vanishing A5/2.

The above mentioned issues also affect a proper theo-
retical understanding of the direct CP-violation parameter
ε′/ε. In particular, the leakage of the octet amplitude in A2
(due to isospin breaking effects) brings an extra contribu-
tion to the CP-violating phase of A2. In the literature only
the leakage due to mu − md isospin breaking effects has
been analyzed, and is found to be numerically important
[8,9]. Moreover, the presence of a ∆I = 5/2 amplitude
introduces an extra term in the usual formulae for ε′. Fi-
nally, understanding the issue regarding the phase shift
δ0 − δ2 will provide a better theoretical determination of
the phase of ε′.

The above considerations call for a careful analysis of
electromagnetic effects on K → ππ decays.

1.2 Electromagnetism and the K → ππ amplitudes

One can summarize the effects of electromagnetism on
K → ππ amplitudes as follows:
1. First of all one has to deal with universal infrared (IR)

effects, due to photons of long wavelength. These ef-
fects are common to all processes with charged exter-
nal particles and do not depend on details concern-
ing the original interaction. They are represented di-
agrammatically in Fig. 1, where the dark blob is seen
as pointlike by the infrared photons. This class of con-
tributions provides a Coulomb final state interaction
(FSI) phase and gives rise to IR divergent amplitudes.
Such infrared divergences have to be canceled by con-
sidering the effect of soft real photons (Fig. 1b). As
we shall show in Sects. 2 and 5, these effects can be de-
scribed as modifying the phase space factor rather than
producing effects on the amplitudes themselves. In or-
der to perform an accurate phenomenological study,
it is important to include this class of radiative cor-
rections in the experimental analysis of the branching
ratios (see Sect. 5 for details).

2. There are structure dependent effects, sensitive to the
form of the original interaction. These are hidden in
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(a) (b) (c)

Fig. 1a–c. Electromagnetic contributions relevant for the in-
frared behavior

Fig. 1 within the large dark vertices. We consider only
corrections induced by the dominant (octet) part of the
weak hamiltonian. These produce shifts in the isospin
amplitudes, and are responsible for possible large con-
taminations of A2. They also generate a ∆I = 5/2
amplitude. We have calculated these effects in ChPT
and in dispersive matching. [2,3]

3. Finally EM affects the final state interaction. As a
consequence the unitarity relations, determining the
rescattering phases, are altered. The main modifica-
tions are due to the opening of the ππ + nγ interme-
diate channels and the possibility of mixing between
two-pion states in isospin I = 0 and I = 2. These
new features imply modifications to the unitarity pa-
rameterization, governed by an extension of Watson’s
theorem that we shall discuss at length in Sect. 4.

Clearly the items enumerated above are intertwined
and affect in various respects the way one analyzes the
K → ππ amplitudes. It is important to note that - al-
though being perturbatively small - the new interaction
considered breaks the original isospin symmetry on which
the parameterization of K → ππ amplitudes is based.
Therefore, to perform a complete analysis of EM effects
to K → ππ decays, one must understand how to parame-
terize the above mentioned effects.

2 Infrared behavior and isospin amplitudes

2.1 Defining infrared finite amplitudes

Let us start by summarizing the regularization and re-
moval of infrared divergences. These arise in perturbation
theory through diagrams in which virtual photons connect
external charged legs. The classical works of [13,14] show
how to sum the infrared singularities to all orders in per-
turbation theory and isolate an infrared finite amplitude.
We begin by reviewing the content of these works. Let
us introduce an IR regulator λ. For our calculation, this
takes the form of a photon squared-mass, λ ≡ m2

γ . Let A
be the amplitude for a generic process involving charged
particles. To all orders in the EM interaction A is given
by the expansion

A =
∞∑
k=0

Ak , (5)

with Ak = O(αk). Order by order one has the sequence
of relations,

A0 = a0 ,

A1 = a0 · αB(λ) + a1 ,

A2 = a0 · (αB(λ))2

2
+ a1 · αB(λ) + a2 , (6)

...

Here B(λ) is an infrared divergent function of λ, while the
ak are infrared finite. Summing to all orders results in the
compact relation

A(α) = eαB(λ) ·
∞∑
k=0

ak ≡ eαB(λ)Ā(α) , (7)

where all IR-singular dependence appears solely within
the exponentiated factor αB(λ), which multiplies the in-
frared finite amplitude Ā(α). The function αB(λ) only
depends on the external states and knows nothing on the
nature of the interaction generating the process. On the
other hand, the amplitude Ā(α) contains the structure
dependent EM effects. These quantities arise naturally in
the calculation described in [2], where we provided explicit
expressions in the case of A+−.

The construction just described needs to be supple-
mented by the following comments. As (6) shows, the
function B(λ) arises as a first order correction in α. This
means that a one-loop calculation allows resummation of
the IR singularity to all orders. However, the definition of
the IR finite part of B(λ) is not unique. This means that
there is an ambiguity in the way one separates the infrared
multiplicative factor from the structure dependent effects.
This is a peculiar property of EM radiative corrections and
does not affect the definition of physical observables. For
example, once one picks a definition for B(λ) and follows it
throughout the calculation, comparison with experiment
will lead to unambiguous extraction of the EM free quan-
tities (like a0). We will explicitly display our formulas for
B(λ) below.

The infrared divergences of the amplitudes have now
been isolated in an overall factor. Removal of infrared di-
vergences from the expression for the decay rate or cross
sections is achieved by taking into account the effect of
soft real photons in the external states. This is motivated
by the observation that for soft photons, whose energy is
below some experimental resolution ω, the generic states
n and n + k γ cannot be distinguished. The physical ob-
servable always involves an inclusive sum over the n and
n+ k γ final states. We shall give details of this in Sect. 5.

2.2 Isospin amplitudes

Having described the construction of IR finite amplitudes,
we can now analyze the effect produced on the isospin
amplitudes A0, A2. We start from the IR finite amplitudes
in the charged basis {A+−,A00,A+0}. It is then possible
to define the would-be isospin amplitudes by taking the
following linear combinations:

A0 =
2
3
A+− +

1
3
A00 ,
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A2 =
√
2
3
(A+− − A00) , (8)

A+
2 =

2
3
A+0 .

The content of (8) is that in the absence of EM and for
mu = md the amplitudes AI truly describe transitions to
ππ states with definite isospin. In the presence of isospin
breaking interactions, however, the amplitudes AI become

AI = (AI + δAI) ei(δI+γI) , (9)

with shifts δAI and γI corresponding respectively to the
modulus and phase of the original isospin amplitude.

We can summarize the discussion presented so far by
displaying the parameterization of the IR finite amplitudes
in the charged basis

A+− = (A0 + δA0) ei(δ0+γ0) +
1√
2
(A2 + δA2) ei(δ2+γ2) ,

A00 = (A0 + δA0) ei(δ0+γ0) −
√
2 (A2 + δA2) ei(δ2+γ2) ,

A+0 =
3
2
(
A2 + δA+2

)
ei(δ2+γ

+
2 ) , (10)

where δAI and γI contain IR finite EM effects as well as
other isospin breaking terms. This parameterization has
to be compared with the isospin invariant expressions in
(2). We recall here that this parameterization holds for
the IR finite amplitude as defined in (7). We also observe
that the shifts δA+2 and γ+2 in A+0 are distinct from the
corresponding shifts in A+− and A00, as a consequence of
the ∆I = 5/2 amplitude induced by electromagnetism. In
the notation of Eq. (4) one has:

δA0 = δA1/2 ,

δA2 = δA3/2 +A5/2 , (11)

δA+2 = δA3/2 − 2/3 A5/2 .

2.3 Discussion

The parameterization given in (10),(11) provides the basis
for any phenomenological analysis of K → ππ decays with
inclusion of isospin breaking (due to strong and electro-
magnetic effects). Comparison with experimental branch-
ing ratios (see next Section for some caveats related to ra-
diative corrections) allows one to arrive at relations among
the different parameters. Examples of such analysis are
given in [10] and the third paper of [9].

It is legitimate at this point to ask what do we know
about the parameters entering (10) and what do we want
to extract from the comparison with experiment.

1. First, let us consider the amplitudes A0 and A2. Many
theoretical efforts have been devoted to their calcula-
tion, and no calculation can be considered fully satis-
factory at present. We want to extract these param-
eters from the comparison with the branching ratios,
eliminating the electromagnetic isospin breaking con-
taminations.

2. Next, one has the shifts δA0, δA2, and δA+2 . We have
calculated the EM contributions to them [2,3], and we
are quite confident that our results capture the true
underlying physics within the theoretical uncertainty
quoted. In particular, our results provide an estimate
for A5/2. Explicitly we find [3]:

δAEM0 = (0.0253 ± 0.0072) · 10−7MK0 ,

δAEM2 = (0.0147 ± 0.0063) · 10−7MK0 ,

δA+ EM
2 = (0.008 ± 0.0088) · 10−7MK0 ,

AEM5/2 = (0.0137 ± 0.0097) · 10−7MK0 .

For recent estimates of the size of non-EM isospin
breaking effects, see [9]. The corrections δAiso−brk∆I con-
tain only a negligible∆I = 5/2 component, as the only
source for it would be a combination of the ∆I = 1
interaction proportional to (mu − md) with the sup-
pressed ∆I = 3/2 weak interaction. This ensures that
δAiso−brk1/2,3/2 can be reabsorbed into A0,2. Therefore, in
what follows A0 and A2 still contain strong isospin
breaking contaminations. These can be subtracted by
using the results of [9].

3. Finally, let us consider the rescattering phases. In ab-
sence of isospin-breaking the phases γI vanish as a con-
sequence of Watson’s theorem. The strong phases δI at
s = M2

K are known through dispersive treatment of ππ
scattering data3. The inclusion of strong isospin break-
ing effects still gives γI = 0, to first order in mu − md
[10]. It is the inclusion of EM corrections that gen-
erates nonzero γI . Since the phase δ2 + γ+2 does not
enter any physical relation, we disregard it from now
on. As for the phases γ0 and γ2, we can relate them to
EM effects in the final state interaction. This can be
done in perturbation theory [2] or in a more general
setting provided by unitarity. As we shall discuss in
Sect. 4, our present knowledge of γ0,2 reveals a large
value of γ2 and relies on a lowest order analysis of EM
corrections to ππ scattering. Next to leading order cor-
rections can be quite large at s = M2

K , and this adds
substantial uncertainty to γ2.

3 Analysis in the presence
of electromagnetism

The CP-conserving sector of K → ππ phenomenology re-
lies essentially on three experimental numbers. These are
the partial decay widths of KS into π+π−, π0π0 and of
K± into π±π0. Knowledge of these numbers allows one
to extract the invariant decay amplitudes and to compare
with theoretical calculations. In this section we describe
the procedure to be followed in order to extract the in-
variant amplitudes in presence of radiative corrections.

3 For a list of references see [10]
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3.1 The fitting procedure in presence
of radiative corrections

In presence of radiative corrections, the appropriate ex-
pression to be used when comparing theory and experi-
ment is:

Γn(ω) =
Φn

2
√
sn

|An|2Gn(ω) , (12)

where n = {+−, 00,+0}. In (12) the left hand side Γn rep-
resents the measured partial width and we indicate with
the parameter ω its dependence on the way soft photons
are treated in the data analysis. It is clear that the use of
different cuts leads to different values for the decay widths,
because of the inclusion of different portions of the corre-
sponding radiative channel (n + γ) in the data sample.
On the right hand side of Eq. (12) one has the kinemat-
ical parameters sn (squared center-of-mass energy of the
process) and Φn (the two body invariant phase space as-
sociated with the decay). The quantities related to the
dynamics are An and Gn(ω). An is the infrared finite in-
variant amplitude, as defined in Sect. 2, (10). It contains
the true weak transition component that we wish to ul-
timately extract as well as infrared finite electromagnetic
corrections. Gn(ω) is the infrared factor associated with
the combined effect of virtual and real photons. The latter
contribution involves an integration over the soft-photon
phase space: this has to be done with the same prescrip-
tion used in extracting the experimental number Γn(ω).

The extraction of IR-free invariant amplitudes is a
straightforward consequence of (12). Specializing to the
K → ππ case, one has:

|A+−|
MK0

=
1√
2

√
8π
p+−

Γ+−(ω)
G+−(ω)

,

|A00|
MK0

=
√

8π
p00

Γ00 , (13)

|A+0|
MK+

=

√
8π
p+0

Γ+0(ω)
G+0(ω)

,

where

p+− =

√(
MK0

2

)2
− M2

π+ ,

p00 =

√(
MK0

2

)2
− M2

π0 , (14)

p+0 =

√(
MK+

2
+

M2
π0 − M2

π+

2MK+

)2
− M2

π0 .

In order to carry out the procedure one needs the phys-
ical masses, the experimental input Γn(ω), and the cor-
responding theoretical infrared parameters G+−,+0(ω). If
things are done properly, the ω dependence cancels in the
ratios on the right hand side of (13), which provides then
the values of |An|. Having the amplitudes |An| one can

then use (10) to obtain relations between the physical pa-
rameters. However, there is an important issue to be ad-
dressed in order to complete the program outlined above:
it is the proper definition of the infrared factors G+−(ω)
and G+0(ω), to which we now turn.

3.2 The infrared factors

As already noted, the theoretical definition of G+−(ω) and
G+0(ω) involves integration over the soft-photon phase
space, with cuts generically indicated by ω. The infrared
factor is experiment dependent and accounts for the com-
ponent of the radiative mode (ππγ in our case) included
in the parent mode (ππ) branching ratio. We shall work to
order α and thus include only the effect of the ππγ radia-
tive state. While we display the ingredients needed for any
experimental analysis, we carry the treatment to comple-
tion for the case where the infrared sensitivity is isotropic
in the center of mass. That is, we display the explicit for-
mulas obtained when one integrates over the ππγ phase
space applying an isotropic cutoff ω on the photon energy
Eγ in the center of mass frame. This is most natural to
use in the data analysis for an experiment such as KLOE
at DAΦNE, given the working conditions of the machine
and the detector geometry. A more detailed study (either
theoretical or experimental) is required in order to apply
radiative corrections to the data analysis of other experi-
ments. The presence of several high statistics experiments
offers a unique opportunity for performing an accurate
measurement of K → ππ branching ratios, including the
effect of radiative corrections. Such an analysis would fill
the present gap in the study of radiative corrections to
K0 → ππ, and would therefore be highly desirable.

Calculation of the factorsG+−(ω) andG+0(ω) requires
consideration of a combination of effects due to virtual
photons in the amplitudes A+−,+0 (field theoretic version
of the non-relativistic Gamow factors) and to soft real
photons entering the processK → ππ+γ. Moreover, in the
infrared region of the spectrum, the amplitude for K →
ππ + γ is dominated by the internal bremsstrahlung (IB)
component, proportional to the non-radiative amplitude.
For the case in question one has:

AIB+− γ = eA+−

(
ε · p+
q · p+ − ε · p−

q · p−

)
,

AIB+0 γ = eA+0

(
ε · p+
q · p+ − ε · pK

q · pK

)
, (15)

where ε and q are the polarization and momentum of the
emitted photon. Now, the infrared-finite observable decay
rate is

Γn(ω) = Γn + Γnγ(ω) , (16)

where n = +−,+0 and

Γn =
1

2MK

∫
dΦn

∣∣An (1 + αBn(mγ))
∣∣2 ,(17)

Γnγ(ω) =
1

2MK

∫
Eγ<ω

dΦnγ
∣∣Anγ∣∣2
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=
1

2MK

∫
dΦn

∣∣An∣∣2 In(mγ , ω) . (18)

At this stage the rest of the calculation becomes depen-
dent on the geometry of the experiment. For a kaon at rest
with an isotropic detector, the acceptance cutoff Eγ < ω
will be the same in all directions. For a kaon in flight, the
acceptance may be different for photons emitted in differ-
ent directions. In this latter situation, the integral in Eq.
(18) needs to be numerically integrated over the detector
acceptance and then added to the two body result, Eq.
(17). This will then be finite in the limit of mγ → 0, and
will allow the measurement of the IR finite amplitude An.
We carry out this procedure explicitly below for the case
of an isotropic cutoff.

In (17),(18) dΦk is the differential phase space factor
for each process, An is the IR finite amplitude, as de-
fined in Sect. 2 by extracting the IR divergent functions
Bn. The Bn can be calculated by considering one-loop di-
agrams with virtual photons connecting the external legs
and using a point-like vertex for the weak interaction. The
definition of Bn is not unique due to the possibility of
adding IR and UV finite terms to it. The explicit expres-
sions given below4 fully specify our choice of what goes
into Bn and what goes into the structure dependent shifts
δAn. The second expression in Eq. (18) describes the fac-
torization of the ππ and γ phase spaces, valid with an
accuracy of ω/MK . Explicitly one has:

In(mγ , ω) =
∫
Eγ<ω

d3q

(2π)32Eγ

∑
pol

∣∣∣∣AIBnγAn

∣∣∣∣
2

. (19)

Combining the above results one arrives at

Gn(ω) = 1+2αReBn(mγ) + In (mγ , ω)+O(α2) . (20)

We now collect the explicit form of the functions
B+−,+0 and I+−,+0, entering in the definition of G+−,+0
(see 20). For G+−(ω) one needs:

B+−(m2
γ) =

1
4π

[
2a(β) ln

M2
π

m2
γ

+H+−(β)

+iπ
(
1 + β2

β
ln

M2
Kβ

2

m2
γ

− β

)]
,

I+−(mγ , ω) =
α

π

[
a(β) ln

(mγ
2ω

)2
+ F+−(β)

]
, (21)

where
β = (1 − 4M2

π/M
2
K)

1/2 (22)

and

a(β) = 1 +
1 + β2

2β
ln
(
1 − β

1 + β

)
,

H+−(β) =
1 + β2

2β

[
π2 + ln

1 + β

1 − β
ln

1 − β2

4β2

+2f
(
1 + β

2β

)
− 2f

(
β − 1
2β

)]
4 See also [2]

+2 + β ln
1 + β

1 − β
,

F+−(β) =
1
β
ln

1 + β

1 − β
+

1 + β2

2β

[
2f(−β) − 2f(β)

+f
(
1 + β

2

)
− f

(
1 − β

2

)
+

1
2
ln

1 + β

1 − β

× ln(1 − β2) + ln 2 ln
1 − β

1 + β

]

f(x) = −
∫ x

0
dt

1
t
ln |1 − t| . (23)

We note that B+− includes the Coulomb factor πα/vrel
(first term in H+−(β)), as well as typical field theoretic
effects. As for G+0(ω), one has:

B+0(m2
γ) =

1
4π

[
2b(β) ln

M2
π

m2
γ

+H+0(β)
]
,

I+0(mγ , ω) =
α

π

[
b(β) ln

(mγ
2ω

)2
+ F+0(β)

]
, (24)

where

b(β) = 1 +
1
2β

log
(
1 − β

1 + β

)
,

H+0(β) = − 1
β

[
1
2
log
(
1 + β

2

)
log
(

2 + 2β
(1 − β)2

)

−1
2
log
(
1 − β

2

)
log
(

2 − 2β
(1 + β)2

)

+ log
(

4β
1 − β2

)
log
(
1 + β

1 − β

)
+ f

(
1 + β

2β

)

−f

(
β − 1
2β

)
+ f

(
− (1 − β)2

4β

)

−f

(
(1 + β)2

4β

)]
+ 2 + log

1 − β2

4
− 2

1 − β

× log
(
1 + β

2

)
− 2

1 + β
log
(
1 − β

2

)

and

F+0(β) = 1 +
1
2β

log
(
1 + β

1 − β

)
− 4

1 − β2

×
∫ +1

−1
dx

E(x)
D(x)p(x)

log
(
E(x) + p(x)
E(x) − p(x)

)
D(x) = (x − x1)(x − x2)

x1/2 =
M2
K

M2
π

(1 ± β) − 1

E(x) =
MK

4
(3 − x)

p(x) =
MK

4
β(1 + x) . (25)

G+− and G+0 do not depend on the infrared regula-
tor mγ . We display plots of the functions G+−(ω) and
G+0(ω) on a typical range of values for the parameter ω
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Fig. 2. The function G+−(ω)
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Fig. 3. The function G+0(ω)

in Figs. 2 and 3. The functions Gn(ω) are the only EM ef-
fects previously considered in the literature [5], although
with a slightly different definition. In fact, the works of [5]
use a point-like vertex for the weak interaction, and there-
fore are not sensitive to structure dependent corrections.
In these works the EM effects due to wavefunction renor-
malization and vertex correction go entirely in the defi-
nition of Bn (this includes also the UV divergent terms,
regulated by means of a cutoff). Apart from the cutoff-
dependent term and an extra finite contribution, our ex-
pressions match the ones given in the second and third
papers of [5].

4 Effect of EM on K → ππ phases

The amplitude parameterization we have used for the pre-
vious analysis already implies that K → ππ data do not
provide direct information on the strong ππ phase shift
difference δ0 − δ2. This would only be true in the isospin
limit (γI = 0). In this limit, the requirement that strong
interaction phases appear in the weak decays is known
as Watson’s theorem, which is valid whenever the final
state rescattering involves only elastic scattering. Despite
the fact that isospin breaking has been long understood
to cause mixing of weak amplitudes, there has been no

recognition that the strong interaction phases no longer
suffice to describe the rescattering effects. This occurs be-
cause elastic rescattering is no longer the full content of
final state interaction, so that the conditions for the ap-
plication of Watson’s theorem no longer apply. Moreover,
there exists a sizeable discrepancy between the determi-
nation of δ0 − δ2 from K → ππ data using isospin rela-
tions and the favored value of the phase shift difference
known by other determinations. This seems to point to
violations of Watson’s theorem. It is our purpose to set
the framework for the correct treatment of this problem
in the isospin breaking real world. We shall accomplish
this by writing a coupled channel unitarity constraint in
the presence of EM interactions (and isospin breaking in
general) and solving for the parameters γ0 and γ2 entering
(10). This analysis will complement and extend the per-
turbative results obtained in [2], which already indicated
a large value of γ2. We defer to the next section the ex-
traction of δ0 − δ2 and the uncertainty to be associated
with it.

4.1 Extended unitarity relations

The first step in our program is writing down meaning-
ful unitarity relations in the presence of EM interactions.
Here, it is natural to work in the charged basis {π+π−,
π0π0} and then try to recover the notion of isospin am-
plitudes. In order to fix the notation, let us start from the
unitarity relations involving the decay amplitudes of K0

to {π+π−, π0π0} in the limit in which EM is turned off.
Then, only the ππ intermediate states have to be taken
into account and one finds:

A+− − A∗
+− = i

(T ∗
+−;+− × A+− + T ∗

00;+− × A00
)

,

A00 − A∗
00 = i

(T ∗
+−;00 × A+− + T ∗

00;00 × A00
)

, (26)

In (26) A+− and A00 represent the K0 decay amplitudes
and Tf ;i is the T -matrix element for the transition i → f
(in this case it only involves pion-pion scattering). ‘T ∗ ×
A’ denotes the product of amplitudes integrated over the
intermediate state phase space. In the case considered here
of two-pion intermediate states, one has:

T ∗ × A ≡
∫

dΦ2 T ∗A = Φs 4β A · T ∗ , (27)

where β = (1 − 4m2
π/m

2
K)

−1/2 is the pion velocity in the
kaon rest frame. Φs is the symmetry factor for identical
particles (equal to 1/2 for the π0π0 state) and T is the S-
wave projection of the ππ scattering amplitude T (cos θ),
defined by:

T =
1

64π

∫ +1

−1
d(cos θ)T (cos θ) . (28)

Turning on EM interactions introduces isospin break-
ing dynamics as well as IR singularities in the amplitudes
and the opening of intermediate radiative channels. Specif-
ically, A+−, T00,+−, and T+−,+− become IR divergent
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and T+−,+− acquires a purely Coulomb component (also
IR singular). The work of [13,14], summarized in Sect. 2
teaches us that one can always isolate the singularity in a
multiplicative exponential factor

Af,i = eαBf,i Af,i . (29)

Here Af,i is the IR finite amplitude and Bf,i(mγ) is the IR
singular factor that depends only on the external states.
We shall only need the factor B+−, already encountered in
this paper, associated with a pair of charged pions in the
initial or final state. We note that Bf,i(mγ) is in general
complex. In particular, its imaginary part is equal to the
Coulomb scattering phase shift associated with each pair
of charged particles in the initial and final states [14].

Upon integrating over the phase space and using the
above mentioned property on the Coulomb phases, one
can rewrite (26) in terms of IR finite quantities and Bf,i
factors. Moreover, due to the integration over the phase
space some contributions in the Bf,i factors simplify and
one ends up with:

A+− − A∗
+−

= i
(
T ∗
+−;+− × A+− e2αReB+− + T ∗

00;+− × A00

)
,

A00 − A∗
00

= i
(
T ∗
+−;00 × A+− e2αReB+− + T ∗

00;00 × A00

)
. (30)

Note that now T +−,+− is the IR finite π+π− → π+π−
amplitude subtracted of its purely Coulomb term.

Equation (30) contains IR singularities, but the analy-
sis is still missing an important effect of EM: the opening
of inelastic radiative channels. This is the key ingredient
in obtaining an IR finite set of unitarity constraints, as it
was in obtaining an IR finite cross section or decay rate.
In fact, the IR singularities will cancel in the sum over
the π+π− and π+π−γ intermediate states, with the same
mechanism described in the definition of Γ+−, Γ+0 ear-
lier in Sect. 3. Working at order O(α), we consider only
the radiative state π+π−γ. For our analysis we require
the amplitudes for K0 → π+π−γ and ππ → π+π−γ. We
include only the internal bremsstrahlung component of
these amplitudes, known to be dominant over possible di-
rect emission terms. Now one has to integrate over the full
π+π−γ phase space and the final result for the unitarity
condition reads:

Im
(A+−

A00

)
= β

(
2 T ∗

+−;+− (1 +∆+−) T ∗
00;+−

2 T ∗
+−;00 (1 +∆+−) T ∗

00;00

)

×
(A+−

A00

)
. (31)

We recall that T a,b are the S-wave projections of the ππ
scattering matrix.∆+− is the IR finite remnant of the sum
of IR singular terms in the π+π− and π+π−γ intermediate
states. In terms of the notation of Sect. 3.2, it is given by:

∆+− = − 2δM2
π

β2M2
K

+ 2αReB+−(mγ) + e2
1

Φ+−

∫
dΦ+−γ

×
∑
pol

∣∣∣∣ q+ · ε
q+ · k − q− · ε

q− · k
∣∣∣∣
2

. (32)

Here the first term is the phase space correction due to
the EM mass-shift of charged pions. The second term is
the effect of infrared virtual photons, while the third term
is the effect of real soft photons in the intermediate state
π+π−γ. Numerically we find (displaying separately the
phase space contribution and the remainder):

∆+− = (−14.8 + 10.8) · 10−3 = −4.0 · 10−3 . (33)

4.2 From charge to isospin basis

Assuming unitarity of the S matrix, we have thus far ob-
tained a set of relations containing the IR finite amplitudes
in the charge basis. In order to compare with usual treat-
ments of this problem, we rotate now to the isospin basis
for the K → ππ amplitudes,

AISO =
(A0

A2

)
=

1
3

(
2 1√
2 −√

2

)(A+−
A00

)
. (34)

Applying the same transformation to the whole system in
Eq. (31) one obtains in matrix form:

ImAISO = β
(
T †
ISO + R

)
AISO , (35)

where

T ISO =

(
T0 T02
T20 T2

)
, (36)

and

R =

(
R00 R02
R20 R22

)
=

1
3
∆+−

(
2T ∗
0

√
2T ∗
0√

2T ∗
2 T ∗

2

)
. (37)

T ISO is the ππ scattering matrix in the isospin basis, while
the matrix R, proportional to ∆+−, contains the effect
of IR radiative corrections and the radiative intermediate
channel. The ππ scattering T-matrix now involves both
strong and EM interactions, and thus contains isospin-
violating matrix elements. In the conventions used in our
work, the amplitudes for the ππ scattering in the isospin
basis are expressed in terms of the charged ones as:

T0 =
1
3
(
4T +−,+− + T 00,00 + 4T 00,+−

)
,

T2 =
2
3
(T +−,+− + T 00,00 − 2T 00,+−

)
, (38)

T20 = T02 =
√
2
3
(
2T +−,+− − T 00,00 − T 00,+−

)
.

A general parameterization of the ππ transition matrix in
the isospin basis is:

β T ISO =

(
(η0 e2iδ0 − 1)/(2i) aei(δ0+δ2+∆)

aei(δ0+δ2+∆) (η2 e2iδ2 − 1)/(2i)

)
.

(39)
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In this parameterization we allow for isospin mixing (the
off-diagonal parameter a) and for possible non-unitarity in
the ππ two dimensional subspace (due to opening of other
channels). This is accomplished by introducing the inelas-
ticity parameters η0,2 and the extra phase ∆ in the off-
diagonal term. The parameters ηI are of order 1+O(α2),
while a and ∆ are of order α.

The form given in (39) is fully general and includes all
isospin breaking effects. However, strong isospin breaking
is expected to induce only subleading rescattering effects.
In fact, mu − md �= 0 produces an I = 1 perturbation to
the original interaction. This is not sufficient to mix the
I = 0 and I = 2 ππ scattering states when treated to
first order, nor does it cause a splitting of the masses of
the charged and neutral pions. This implies that elastic
scattering of these states is still the only option, and to
first order in mu − md the parameter a does not receive
contributions. The values of the phases δI may in principle
be slightly modified by the quark mass effect, yet this
is contained in the measured values of the experimental
phase shifts.

4.3 Solution for γ0,2

We are now in position to explore the consequences of
unitarity on the rescattering phases γ0,2. We write

AI = AI e
i(δI+γI) (40)

and insert these expressions into Eq. (35). We then solve
for sin γ0 and sin γ2 to first order in α, taking into account
the ∆I = 1/2 hierarchy of magnitudes. After some simple
algebra, we obtain the solutions

sin γ0 = β (ReR00 − tan δ0 ImR00) � O(α sin δ0)

sin γ2 = β
A0

A2

[
T20 +

1
cos δ2

(ReR20 cos δ0

−ImR20 sin δ0)

]
(41)

The most important feature of these results is the factor
A0/A2 in the formula for sin γ2. This implies that even
though the non-elastic scattering is electromagnetic in ori-
gin, it is enhanced by a large factor that allows the net
change to be significant. Equation (41) gives us the de-
sired expression relating the phase γ2 to isospin breaking
rescattering effects. These are contained in the parameters
T20, the mixing amplitude between ππ states, and R20.
This last parameter contains the effect of the radiative
intermediate channel π+π−γ as well as the phase space
correction. We note that (41) is a generalization of the re-
lation obtained at one loop in ChPT. However, inspection
reveals that the perturbative determination contains only
the phase space effect and the T20 mixing in lowest order.

In attempting to estimate the magnitudes of the new
phases, we are hampered by the fact that the analysis of
electromagnetic effects in ππ scattering is not yet complete

in the literature. Two groups have provided analyses of
reactions involving neutral mesons [16], but the channels
with all charged particles are not yet fully analyzed. We
require the scattering elements at center-of-mass energy
equal to the kaon mass. The threshold matrix elements
are known from simple tree level calculations, and we will
use these in our estimate below. However, the amplitudes
can experience large changes at s = M2

K , and one needs
at least one-loop chiral perturbation theory in order to
obtain these. As these results become available, they can
be used to update our numerical estimates.

We estimate the off diagonal parameter at lowest order
in chiral symmetry obtaining:

T02 =
√
2
3

· δM2
π

8πF 2π
� 2.7 × 10−3 . (42)

For the parameter R20, proportional to the radiative ef-
fect, one has

R20 =
√
2
3
∆+−T ∗

2 , (43)

and we use the form

T2 =
1
β
eiδ2 sin δ2 , (44)

with the phenomenological central value of δ2 = −7.8o
[11]. Numerically this leads to

ReR20 = 0.280 · 10−3

ImR20 = 0.034 · 10−3 (45)

These numerical estimates allow us to identify the off-
diagonal ∆I = 2 rescattering as the major new ingredient
in the final state phases and to arrive at the result:

γ0 = −0.1o , γ2 = 3.1o . (46)

We note here that the result for γ2 is quite large, amount-
ing to almost 50% of the strong phase δ2 at s = M2

K .

5 Sample fit to K → ππ data

In this section, we provide a tentative fit to the present
experimental data. This is meant as an illustration of the
ideas that we have discussed above, and hopefully will
provide a model for a new fully consistent experimental
analysis of new data, taken with the full treatment of elec-
tromagnetic effects. We describe our treatment as tenta-
tive because it involves older data sets which were taken
without the inclusion of radiative corrections. We cannot
fully account for the experimental acceptances, and are
forced to adopt a cruder procedure. However, the sample
fit is none the less of interest because it illustrates the sig-
nificant sensitivity of various quantities to electromagnetic
corrections, and represents the best that can be done with
the present data set.
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Fig. 4. Fitted A0 as a function of ω
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Fig. 5. Fitted A2 as a function of ω

5.1 Data analysis

It will be convenient in the discussion to follow to first
define

χi ≡ δi + γi (i = 0, 2) . (47)

Then having G+−(ω), G+0(ω) and the structure depen-
dent corrections δAEMI , one is in a position by using (13)
and (10) to extract the quantities A0, A2 and χ0 − χ2.

As experimental input for the branching ratios we use
the PDG averages, although these numbers come with no
reference to what portion of the K → ππγ mode is in-
cluded. In order to understand the attendant uncertainties
and ambiguities of this approach, in Figs. 4, 5 and 6 we
plot the output of our fit as a function of the parameter
ω, the upper cutoff for IR photons in the center of mass
frame. It is not clear to which value of ω (if any) the ex-
perimental numbers correspond. This ignorance gives rise
to little uncertainty in the extraction A2 and to a mod-
erate one in the extraction of A0, for ω varying between
1 MeV and 20 MeV5. However, more delicate is the sit-
uation for the extraction of the phase χ0 − χ2, where a

5 This range is chosen to reflect a realistic possibility for
detector resolution

5 10 15 20

50

55

60

ω (MeV)

(χ0 − χ2)o

Fig. 6. Fitted χ0 − χ2 as a function of ω

variation of the order of 10% is seen over the considered
range of ω. Thus our analysis indicates that the extraction
of rescattering phases from K → ππ data is sensitive to
the treatment of soft photons. In the absence of precise ex-
perimental information, it is not possible to pick a definite
central value for our output. We thus quote the results for
the set of EM-free quantities with two error bars. The first
one is due to the spread in the central values according to
variations of ω between 1 and 20 MeV. The second one
comes from propagating the experimental uncertainty in
the decay widths and the theoretical uncertainty on the
inputs δAEMI . We find:

A0 = (5.450 ± 0.020 ± 0.015) × 10−7MK0 ,

A2 = (0.255 ± 0.001 ± 0.009) × 10−7MK0 , (48)
χ0 − χ2 = (56 ± 4 ± 4)o .

These results should be compared with the ones presented
in Eq. (3), derived from the analysis in the isospin limit.
The most important new feature is that considering EM
corrections places larger error bars on all these quanti-
ties. In the case of A2 the reason for this resides in the
quite large theoretical uncertainty on δA+2 . For A0 and the
phase difference χ0−χ2, the larger error bar is due essen-
tially to incomplete information concerning the treatment
of the radiative channel. A measurement of the partial
width Γ+−(ω), with accuracy level of ∼ 0.5% (this is the
accuracy level of the present PDG numbers), accompa-
nied by information on soft-photon cuts, would allow one
to extract a definite central value for A0 and χ0 − χ2. As
a consequence, this would eliminate the first error bar as-
sociated with A0 and χ0 − χ2 in (48), reducing the total
uncertainty by 50% or more. Indeed, such an analysis will
be performed by the KLOE experiment at DaΦne [15].

5.2 Extraction of δ0 − δ2: discussion

Finally we turn to the extraction of δ0 − δ2 from K → ππ
data. The relation to be used is:

δ0 − δ2 = (χ0 − χ2)fit + γ2 − γ0 . (49)
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As shown by (49), the extraction of the strong phase dif-
ference relies on two distinct inputs:

1. The first one comes from the fit to K → ππ branching
ratios, which provides χ0−χ2. In Sect. 5A we discussed
such a fit and pointed out the sensitivity of χ0 − χ2
to cuts used for soft real photons. In the absence of
information on these cuts a precise determination of
χ0 − χ2 is not possible and our conclusion is that the
error bars are larger than previously thought:

χ0 − χ2 = (56 ± 8)o (50)

2. The second input concerns the magnitude of γ2 − γ0.
We have thus far established a general framework
(based on unitarity) for the analysis of these isospin
breaking phases. We found that γ2 receives a∆I = 1/2
enhancement and the dominant effect is due to isospin
mixing in the ππ rescattering rather than to radiative
intermediate channels. We have provided an estimate
of T20 at lowest order in the chiral expansion, leading
us to write:

γ2 − γ0 = 3.2o + γ
(e2p2)
2 . (51)

The possibility of large chiral corrections to T20 (as-
sociated with γ

(e2p2)
2 ) cannot be ruled out, given the

results obtained in the analysis of other EM correc-
tions (violations of Dashen’s theorem and the K → ππ
amplitudes).

In light of the previous discussion, we give the following
value for δ0 − δ2 from K → ππ data:

δ0 − δ2 =
(
59 + γ

(e2p2)
2 ± 8

)o
. (52)

The leading order estimate for γ2 is seen to worsen the dis-
crepancy between the central values of weak and strong
determinations of δ0 − δ2. However, the large uncertainty
associated with radiative corrections makes impossible a
precise comparison at this stage. In this sense, the phase
puzzle is alleviated, its cause being a previous underesti-
mate of error bars. Indeed we believe that the combined
effect of radiative corrections to χ0 − χ2 and calculation
of γ(e

2p2)
2 can fully resolve the puzzle, providing a satisfac-

tory theoretical formulation of the problem. In fact, once a
more precise extraction of χ0−χ2 becomes available, (49)
can be used to extract T20, and thus information on the
isospin breaking dynamics in ππ scattering at s = M2

K .

6 Impact on CP phenomenology

In the present section we focus on the consequences of
our work to CP phenomenology in the kaon system. Our
work gives rise to interesting effects only in the theoretical
analysis of ε′. In particular, we provide an estimate of the
isospin breaking parameter ΩEM, the effect of the ∆I =
5/2 amplitude and the phase of ε′.

The analysis of direct CP-violation in K → ππ pro-
ceeds exactly as in the standard case, except that now we

work with the IR finite isospin amplitudes AI and the fi-
nal state interaction phases χI associated with them. One
can then write

ε′ = − i√
2
ei(χ2−χ0) ReA2

ReA0

[ImA0

ReA0
− ImA2

ReA2

]
. (53)

Defining

ω =
ReA2

ReA0
, (54)

and neglecting the small effect of δA0/A0 one arrives at

ε′ = − i√
2
ei(χ2−χ0) ω

ImA0
ReA0

[
1 − 1

ω

ImA2
ImA0

]
. (55)

We recall here that in the Standard Model analysis the
imaginary part of A0 is generated by the so called glu-
onic penguin, while the phase of A2 is generated by the
electroweak penguin.

In order to make manifest the effects of electromag-
netic corrections, we now further study (55). The first new
effect is to be found in the parameter ω. It is due to the
presence of the ∆I = 5/2 amplitude, distinguishing A2

from A
+
2 (see (10)). In the usual treatment one uses the

parameter

ω =
ReA

+
2

ReA0
=

1
22.2

. (56)

However, our derivation shows that one should use ω. The
two are related by:

ω =
ReA

+
2

ReA0

ReA2

ReA
+
2

= ω
(
1 + f5/2

)
. (57)

The other relevant phenomenon is the leakage of the
octet amplitude into A2, providing the dominant part of
δA2. This brings an extra contribution to the CP-violating
phase of A2, essentially generated by the gluonic penguin
and transferred to A2 via isospin breaking effects. This
mechanism is usually parameterized by:

Ωiso−brk =
1
ω

ImδAiso−brk2

ImA0
, (58)

where Ωiso−brk will have contributions from both electro-
magnetic effects (ΩEM) and from strong interaction effects
(ΩSTR) associated with mu �= md,

Ωiso−brk ≡ ΩEM +ΩSTR . (59)

The above observations lead us to write:

ε′ = − i√
2
ei(χ2−χ0) ω

ImA0
ReA0

×
[
1 − 1

ω

ImA2
ImA0

+ f5/2 − Ωiso−brk
]

(60)

Comparing (60) to the standard analysis (not including
EM corrections), one identifies three new effects.
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1. The factor f5/2 appears: it can be obtained by inserting
in (57) our previous estimates of δA2 and δA+2 (see [3]).
We find

fEM5/2 = (9.3 ± 6.1) · 10−2 . (61)

The large uncertainty reflects the one in δA+2 . We thus
find that this effect tends to increase (although slightly)
the central value of ε′/ε. The authors of [10] find an
opposite result because they use the “phenomenologi-
cal” value of A5/2. We believe that the phenomenolog-
ical determination of A5/2, as performed in [10], suffers
from large systematic uncertainties due to neglecting
IR effects and the EM phases γI .

2. One has to consider the electromagnetic contribution
ΩEM, to be added to existing estimates of ΩSTR due to
strong isospin breaking. Again, the analysis performed
in [3] enables us to get the magnitude of ΩEM, since
we calculated there the octet induced component of
δAEM2 . Thus we can write:

ΩEM =
ReA0
ReA2

· ImδA2
ImA0

=
ReA0
ReA2

· Re δA2
ReA0

. (62)

Numerically we find:

ΩEM = (6.0 ± 2.5) · 10−2 . (63)

3. One observes that the phase of ε′/ε is related to χ0−χ2
and not to δ0− δ2, although with the present accuracy
it is hard to make a meaningful determination. We find

Φε
′/ε =

(
χ2 − χ0 +

π

2

)
− π

4
= − (11 ± 8)o . (64)

The resulting effect on the real and imaginary part of
ε′/ε is below the sensitivity of present kaon factories.

We conclude by observing that the individual terms
f5/2 and ΩEM have a respectable size but enter in the
expression for ε′ with opposite sign. The net effect has a
very small central value with a large uncertainty.

7 Conclusions

In this paper we have attempted a full phenomenological
analysis of K → ππ decays in the presence of electromag-
netic interactions. We have provided a general parame-
terization of K → ππ amplitudes to include the effect
of isospin breaking interactions. Such a parameterization
has allowed us to organize the calculation in terms of three
main effects: structure dependent corrections (see [1–3]),
electromagnetic infrared corrections, and isospin breaking
in final state interactions. We have also studied the effect
of electromagnetic corrections on the direct CP-violation
parameter ε′.

7.1 IR effects: need for new B.R. measurements

It is well known that the calculation of IR effects requires
knowledge of the experimental cuts used in treating the

soft photons emitted in the K → ππ decays. In Sect. 5
we have pointed out that the PDG numbers come with
no information concerning the radiative channel, and this
seriously compromises any attempt to properly include
the radiative corrections. In the absence of experimental
input, we have performed a calculation of the IR effects
in a simple theoretical scheme (isotropic cut on the pho-
ton energy in the center of mass system). We have shown
how this incomplete state of affairs produces uncertainties
larger than previously thought in the EM-free quantities

We strongly urge that a measurement of the K → ππ
branching ratios be performed at one of the current high
statistics kaon experiments. To be precise, it would be in-
teresting to have a set of measurements of Γn(ω) (n =
+−,+0) at different values of ω (the soft photon upper
cutoff in the center of mass frame). This would allow any-
one to apply our calculation of G+− and G+0 in making a
phenomenological analysis (as in Sect. 5). Of course, each
distinct experimental procedure would require its own the-
oretical calculation of G+−,+0. All such studies would be
equally welcome, as long as they provide information on
the inclusive sum of ππ and ππγ channels. We stress that
such measurements are necessary in order to fully address
the impact of EM on K → ππ decays.

7.2 Final state interaction phases

We have shown that isospin breaking changes the descrip-
tion of rescattering phases in K → ππ decays, as Wat-
son’s theorem is no longer applicable. We have described
this new feature within the general framework provided
by the unitarity relations, pointing out that the relevant
effect is of electromagnetic origin. In Sect. 4 we have set
up the framework relating the extra phases γ0,2 to EM
effects in ππ scattering. Our leading order analysis finds a
large effect in γ2, equal to 50% of the strong phase δ2. The
general framework presented has the potential to fully re-
solve the long standing inconsistency between the strong
determination of δ0− δ2 at s = M2

K and the one emerging
from K → ππ data. At present, little can be concluded
due to the large uncertainty in the phase χ0 − χ2 and
the lack of a calculation for γ(e

2p2)
2 . The first problem will

be solved by new measurements of the branching ratios
(including proper information on radiative effects). The
second problem depends on the theoretical ability to cal-
culate EM corrections to ππ scattering at order e2p2 in
the chiral expansion.

7.3 CP phenomenology

Finally, we have analyzed the impact of electromagnetic
corrections on CP phenomenology (see Sect. 6), pointing
out the new features in the study of ε′/ε. The isospin
breaking effects can be encoded into the factors Ω and
f5/2, and also affect the phase of ε′. Both f5/2 and Ω re-
ceive contributions from strong isospin breaking and elec-
tromagnetism. We have provided an estimate for the elec-
tromagnetic effect, finding results of the order of 10%, for
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these parameters. They appear with opposite sign, and
thus do not produce sizeable shifts in the theoretical pre-
diction of ε′/ε.
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